Mean Value Theorem

IMPORTANT

Mean Value Theorem: Overview

This topic covers concepts, such as, Mean Value Theorems, Rolle's Theorem, Cauchy's Mean Value Theorem & Solving Inequalities Using LMVT etc.

Important Questions on Mean Value Theorem

HARD
IMPORTANT

The following function:   f( x )=sinx+cosx,x[ 0, π 2 ] is verifying which of the following rule or theorem:

MEDIUM
IMPORTANT

The value of 'c', of the Lagrange's mean value theorem, for fx=x2-x, x[1,4] is

MEDIUM
IMPORTANT

If the function f(x)=ax3+bx2+26x-24 satisfies the conditions of Rolle's theorem in [2, 4] and f'3+13=0, then the value of ab=

MEDIUM
IMPORTANT

If f(x)=xαlogx and f(0)=0, then the value of 'α' for which Rolle's theorem can be applied in [0, 1] is

HARD
IMPORTANT

 If fx=x-px-qx-r, where p<q<r, are real numbers, then the application of Rolle's theorem on f leads to

MEDIUM
IMPORTANT

If f  and  g are differentiable functions in [0, 1] satisfying f 0 = 2 = g 1 g 0 = 0  and  f 1 = 6 then for some c ] 0 1 [  

MEDIUM
IMPORTANT

If the Rolle's theorem holds for the function fx=2x3+ax2+bx in the interval 1,1 for the point c=12, then the value of 2a+b is:

 

MEDIUM
IMPORTANT

Applying mean value theorem on f(x)=logex; x1,e the value of c=

MEDIUM
IMPORTANT

The point on the curve y=x2, where the tangent is parallel to the line joining the points (1, 1) and (2, 4) is

MEDIUM
IMPORTANT

The c value  of Lagrange’s mean-value theorem for fx=25-x2 on 1,5 is k. Find k.

MEDIUM
IMPORTANT

The point on the curve y=x3-3x, where the tangent to the curve is parallel to the chord joining (1,2) and (2, 2) is 

MEDIUM
IMPORTANT

The c value  of Lagrange’s mean-value theorem for f(x)=x+2  on 4,6 is k2+2k. Find k.

MEDIUM
IMPORTANT

The c value  of Lagrange’s mean-value theorem for fx=x3-3x2+2x on 0,12 is equal to 1-k12. Find k.

MEDIUM
IMPORTANT

Find a point on the curve y=x3, where the tangent to the curve is parallel to the chord joining the points (1, 1) and (3, 27).

MEDIUM
IMPORTANT

The point on the curve y=x(x-4), x0,4, where the tangent is parallel to the x-axis is

MEDIUM
IMPORTANT

Let f(x)=sinx+x3-3x2+4x-2cosx for x(0,1). Consider the following statements
I. f has a zero in 0, 1
II. f is monotone in 0, 1
Then

MEDIUM
IMPORTANT

Let R be the set of all real numbers and f(x)=sin10xcos8x+cos4x+cos2x+1 for xR. Let S={λR | there exits a point c(0,2π) with f'(c)=λf(c)
Then

EASY
IMPORTANT

If fx=logsinx, xπ6,5π6, then value of c by applying L.M.V.T. is

EASY
IMPORTANT

The constant c of Lagrange's mean value theorem for the function fx=2x+34x-1 defined on 1,2 is

MEDIUM
IMPORTANT

Let f(x) be differentiable on [1,6] and f(1)=-2 . If f(x) has only one root in (1,6), then there exists c(1,6) such that